Firms that are innovative are proved to be more successful than non-innovative ones and outperform those both in terms of growth and financial performance. That is a fact that forces SMEs to be repeatedly innovative to maintain their competitive edge in an increasingly globalized and competitive market.

Experience from the industry indicates a low strategic consciousness in SMEs innovation management. Moreover, experience does also suggest that a significant proportion of SMEs show a lack of holistic view in their innovation effort. Even globally successful companies at the technological edge seem to have a tendency to focus only on technology-based innovations and thus miss competitive advantages that a broader approach to innovation would give.

Wings of innovation are a three year research project that aims to support the knowledge base on how to build innovative behavior and capabilities in industrial SMEs and to strengthen SMEs innovative capability as well as a long-term development of the participating companies’ innovation capability.
INTRODUCTION.. 1

RESEARCH AREA.. 1

EARLIER RESEARCH ... 2
RESEARCH SCOPE .. 2
THE PROCESS OF INNOVATION .. 3
FACTORS CRITICAL TO INNOVATION CAPABILITY .. 4
INNOVATION MATURITY ... 4
HYPOTHESES .. 5
RESEARCH QUESTION .. 6
RESEARCH AIM AND GOALS ... 6

RESEARCH PROJECT ... 7

PARTNERS AND CO-PRODUCTION ... 7
RESEARCH METHODS ... 7
ACTION RESEARCH AND COLLABORATION ... 7
AUDITS AND INTERVIEWS ... 8
INTERN OR EXTERN EXPLOITATION ... 8
PROJECT ACTIVITIES ... 9
DIAGNOSE PHASE (Q1 2010) .. 9
PLANNING PHASE (Q1 AND Q2 2010) .. 10
ACTION PHASE (Q3 AND Q4 2010) .. 10
EVALUATION PHASE (Q4 2010) ... 10
DELIVERABLES AND RESULTS ... 11
EXPECTED ACADEMIC RESULTS .. 11
EXPECTED INDUSTRIAL RESULTS ... 11
EXPECTED STRUCTURAL RESULTS .. 11

EDUCATION AND LEARNING .. 11

COURSES... 11
LITERATURE ... 12
JOURNALS AND CONFERENCES ... 13
EXCEPT FOR THAT, MY PUBLISHING STRATEGY IS THIS FAR LIMITED TO TWO ACTIVITIES;
SEARCHING AND LEARNING MORE ABOUT HOW TO FIND COMING CONFERENCES AND SPECIAL
ISSUES BEFORE THEIR CALL FOR PAPERS IS CLOSED, SECONDLY TAKING THE COURSE WRITING
ACADEMIC PAPERS. GRATEFUL FOR ALL ADVISES .. 14
JOURNALS.. 14
CONFERENCES .. 15
RESEARCHERS AND OTHER UNIVERSITIES .. 15
INDUSTRIAL PLAYERS .. 16
Introduction

Firms that are innovative are proved to be more successful than non-innovative ones and outperform the non-innovative ones both in terms of growth and financial performance. Facts that have come force SMEs to be repeatedly innovative to maintain their competitive edge in an increasingly globalized and competitive market. A pressure to innovate that is likely to increase sharply in a near future.

Innovation is complex and multidisciplinary by nature and there are a number of influencing factors that have to be addressed if a firm strives to become continuously innovative. A SME challenge of today is therefore no longer primarily to take innovative ideas to the market in a successful manner, but to do so in a way that reduces innovative randomness. Therefore innovation has to be incorporated and managed as part of the business strategy only then will innovation be managed in a conscious, controlled and cost effective way that contribute sustainable development.

Managing SME innovation is a true challenge, because both scientific research and experiences from the industry indicates that there is a shortage of know-how in the industry and “how-to” details in the research area (Dobni 2006).

Experience from the industry does suggest that a significant proportion of SMEs show a lack of holistic view in their innovation effort. Even globally successful companies at the technological edge seem to have a tendency to focus only on technology-based innovations and thus miss competitive advantages that a broader approach to innovation would give. Moreover even though most companies of today have well developed strategies for e.g. quality and production system management experience also suggest that SMEs shows a low strategic consciousness in their management effort when it comes to innovation.

Research area

The word innovation is often associated with technological inventions and most often with product inventions of technical nature. Technical product inventions can become innovations but does not necessarily have to and innovations are not limited to products.

An innovation could actually be anything that is new e.g. new products, services, processes, business models or even a recombination of something that already exist. That something does however consist an element of novelty to be considered an innovation. The degree of novelty does however vary greatly from innovation to innovation, innovation range from incremental to radical. Where incremental innovations in the lower end of the spectrum are improvements or further developments of something already known while we on the higher end of the spectrum find radical innovations that brings something radically new to the world.

Common to all innovations, regardless of sort and degree of novelty, is that they are not considered to be innovations unless they have been implemented and reached market success.
An innovation is thus something new that has been successfully taken from concept to market and is here defined as: "the implementation of a new or significantly improved product (good or service), or process, a new marketing method, or a new organizational method in business practices, workplace organization or external relations" (OECD, 2005).

Earlier research

Innovation is a complex area, multidisciplinary by nature and in all situations affected by a diverse set of disciplines.

A great deal of research has focused on factors critical for the innovation capability (C Dobni, 2008, R Adams, 2006). Different researchers often categorize these factors slightly different but despite that the similarities are often very large (R Adams et al, 2006).

Successfully bringing innovative ideas to the market is a complex multitask process that by nature demands to be supported by a wide range of competences. The innovation process is also well researched and described in a number of models (Tidd J. & Bessant J., 2009, Adams R. et al, 2006). Models that often share have large internal similarities even if they often are "wrapped" somewhat different.

As a corollary of this a great deal of research has also been focused on how the innovation process can be managed. Strategic innovation management and how innovation efforts can be evaluated and how innovation capability can be measured are to popular research topics. More precise are audits and best practice / benchmarking hot topics (Clercq D.D. et al, 2008, Paladino A., 2009, Varadarajan R. 2009, Leiponen A. and Helfat C.E. 2007).

Innovation has always involved more than technological product innovation and it has always been considered as favorable with an (at least to some degree) open innovation process. But it is perhaps only in recent years that innovation has come to be treated in a more holistic and open way (Chesbrough H.W. 2003) Which among other things is shown by the fact that open innovation, and to, non-technological innovation are two of the currently hottest research areas (Chesbrough H.W. 2007, Hamel G., 2007, Mol M.J. & Birkinshaw J., 2009).

With the more open, wider and holistic view of innovation has also followed a closer bond to what is called design-driven innovation and innovation management. Design management is not a new research area are but are gaining ground and is so strongly influencing innovation management research that its difficult to draw a clear line between those two areas (Utterback J.M. et al, 2006, Hands David, 2009).

Research scope

This far, only a very small proportion of all innovation research have been focused on innovations in SMEs why results of innovation research are often drawn from large
multinational companies. In addition, research are often conducted out of a perspective that focuses on what makes a firm innovative rather than how to make a firm innovative. This make the results less applicable in SMEs, which need of strategic innovation to maintain their competitiveness increases exponentially.

Research focus will primarily be set on how to strategically manage innovation in a conscious, controlled and cost effective way. I will build on earlier research findings and investigate how these can be put together in a frame model that supports SMEs in their efforts of how to manage the implementation of strategic innovation in a way that contributes to Increased Overall Innovation Capability (IOIC) and continuous innovation maturation.

Innovation research is conducted from a variety of perspectives in which the results can be divided into several subareas. Three of these have come to form the basis for my work. These are: critical factors (e.g. factors that are critical to a company’s innovation maturity and capability), the innovation process (its layout and content) and strategic innovation management (how can the complex task of innovation be managed strategically).

The process of innovation
As mentioned before bringing innovative ideas to the market in a successful manner is a complex multitask process that needs support from a wide range of competences. The innovation process is well researched and described in a number of models (Tidd J. & Bessant J., 2009, Adams R. et al, 2006). These models helps to simplify and often have great share of similarities even though they often “wrapped up” somewhat different. In this project we have chosen to use the model of Tidd & Bessant showed below.

![Figure 1: Simplified model of the innovation process, Tidd & Bessant 2009](image-url)
Factors critical to innovation capability

Factors critical for the innovation capability are to a well researched innovation area (C Dobni, 2008, R Adams, 2006). Different researchers often categorize these factors slightly different but despite that the similarities are often very large (R Adams et al, 2006).

Here to, we have chosen to work with the classification done by Tidd and Bessant who have collected the innovation critical factors under the following five categories: Strategy, Learning, Linkages, processes and innovative organization.

![Innovation audit diagram](image)

Figure 2: innovation critical factors, Tidd & Bessant 2009

Innovation maturity

Choosing to base my research upon innovation critical factors and the innovation process is because these together are seen as indicators of a firm’s innovation maturity. Innovation maturity is the degree of awareness and know-how of how to use innovation critical factors during the steps of innovation process and is seen as a measure of a firm’s innovation capability.
Hypotheses

Work has grown out of a number of initial hypotheses based on the industrial indication that there is a general lack of innovation consciousness in SMEs. That and what seem to be a tendency to treat innovation as synonymous with development of innovative product ideas. Ideas addressed to be innovative are often technical by nature and often seems to be customer initiated. Efforts to manage the work of developing new innovative ideas would thereby be executed in a manner substantially similar to traditional project management. Innovation specific issues would to a high extent be left unaddressed and handled in an unconscious and cost uneffective way. Initial hypotheses can be summarized as follows:

In SMEs there is:
- a general lack of innovation management.
- a general lack of strategic innovation consciousness.

These initial hypothesis have been strengthen and further deepened during the first phases of the research project where a situation analysis of three participating SMEs where conducted.

One of the participating SMEs was not representative due to the fact that the organization is too young. The other participating SMEs, however, strongly confirmed the hypotheses, showing low innovation maturity with a narrow and incomplete innovation management. As a result of this seems to have occurred a grave imbalance in the companies’ internal innovation maturity. The internal innovation maturity in those SMEs is unbalanced both in terms of the span of innovation and between various positions and functions. These SMEs shows signs of what I have come to call an innovation maturity gap (innovation gap). The hypotheses is that the

Figure 3: Groups of firms according to innovation capability, Tidd & Bessant 2009
innovation gap has a negative and accelerating effect on a firm's overall innovation capability – Decreased Overall Innovation Capability (DOIC) and thereby a negative and effect on the firm's financial performance, growth and competitive ability. Which thereby would result in a gap-cost.

The result of this was two additional hypotheses as follows:

- Deficient strategic innovation management in SMEs causes an internal innovation maturity gap.
- An internal innovation maturity gap Decreases the Overall Innovation Capability and is thus associated with a gap cost.

Research question

Based on earlier research and the hypothetical assumptions above have the following research questions been formed.

- How can a combination of Tidd and Besant’s innovation process model, the five innovation critical factors in the audit and the innovation maturity/innovation capability model be used to support and framed the development of a firm-specific innovation strategy as a first step of the process of strategic innovation management for an Increased Overall Innovation Capability?

- How can effects of the work with firm-specific innovation strategy be evaluated and measured?

The following are sub questions that have been formulated with the aim of creating a base for work in the project phases to come.

- Is Decreased Overall Innovation Capability an affect of an innovation gap?
- Does spreading width of the innovation gap effect the overall innovation capability?
- How can the effects of an innovation gap be evaluated and measured?

Research aim and goals

Research aims to contribute to Increased Overall Innovation Capability (IOIC) of SMEs.

Research goal is to develop a supporting frame model that supports SMEs in their efforts of *how* to manage the implementation of strategic innovation in a way that contributes to Increased Overall Innovation Capability (IOIC) and continuous innovation maturation.

The project vision is to support the knowledge base on how to build innovative behavior and capabilities in industrial SMEs and to strengthen SMEs innovative capability as well as a long-term development of the participating companies’ innovation capability.
Research project

Wings of innovation are a research project that stretches over three years. Aims of the project are to support the knowledge base on how to build innovative behavior and capabilities in industrial SMEs and to strengthen SMEs innovative capability as well as a long-term development of the participating companies’ innovation capability.

Partners and co-production

A consortium have been formed under the project, consisting: Mälardalens University, Munktell Science Park, the three companies Eskilstuna Elektronik Partner AB, Calix AB and Helekopter AB and Eskilstuna Fabriksförening as a representative for a additional two companies that will enter the project during 2011-2012

Research methods

Project work will run on three levels. Initially on a company level, where the team together with the companies work with development and innovation processes, secondly on a project level, where the team supports companies in singular development projects and finally on a system level where experiences and knowledge is transferred within the consortium.

Figure 4: Illustrating the three levels within Wings of Innovation.

Two groups of three SMEs will participate in the project. Both those groups will go through an 18-month action research cycle. Each research cycle will contain research activities directed to individuals from respective SME, groups of individuals from each participating SME and groups of people from all participating SMEs. The first group of SMEs is active in the project from 2010, the second group enters the project a year later. Which gives the researcher the opportunity to develop and refine methods during the project.

Action research and collaboration

Methodologically, the project will strongly be characterized by a relative high degree of action research. The element of action research will increase during the project as
a result of scientists' expanding invention in participating SMEs innovation activities and innovation projects during the research cycle.

The research work will be characterized by a focus on research in action, more than research on action, meaning that we will work together with intermediaries and company management on innovation challenges.

Research will have a cyclic approach where research findings and company improvements are gradually improved throughout an iterative cycle.

The project approach will be highly collaborative with several actors such as researchers from Mälardalens Högskola, science park coaches and company employees. These aspects create a knowledge development combining theory and practice.

Audits and interviews

At the initial stage of the research cycle research data is collected through an innovation audit, documented and stored in a database. The audit used is developed by established researchers (Tidd & Bessant, 2009) and based upon five areas of innovation critical factors. The audit gives a picture of the current innovation status and will be used as a basis for discussion and interviews. Every audit is followed up with a semi structured interview based on the same questions as in the audit but addressed from a “how” perspective. Interviews are recorded and stored in a database.

At the second phase of the research cycle, data are obtained through observations, questionnaires and semi-structured discussions at 13 seminars. Discussions are recorded and stored in a database, observations and questionnaires documented and to stored in a database. As a complement, data is also collected at semi-structured interviews. These interviews were also recorded and stored in a database.

Subsequent project phases are not scheduled yet, but data collection will likely be based on open and semi-structured interviews, seminars and observations of ongoing innovation projects.

Intern or extern exploitation

The nature of the project requires a strong focus on documentation, monitoring and validity while working with the companies and science parks. By the principles for research design by Maxwell (2005) a general structure for interlink the methods with defining the specific research question. In order to ensure validity it is also important that methodological activities are in accordance with the research in question. In this case the cyclic structure for action research by Coghlan & Coghlan (2002), presented in the figure below, is adopted for the project.

The cycle illustrated in figure 5 consists of four general phases: 1) Diagnose (Data Gathering, Data feedback and Data Analysis), 2) Planning, 3) Action and 4)
Evaluation, each part supplying valuable deliveries to researchers as well as intermediaries and companies.

These four phases are implemented in a cyclic activity plan as follows.

![Diagram of the action research cycle]

Figure 5: The action research cycle (Coghlan & Coghlan, 2002).

Project activities

The content of the work on company level is aligned with the phases of Figure x where the full three year plan in given, and the initial year is described in detail in the following sections.

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>3 SMEs</td>
<td>cycle #1</td>
<td>2 new SMEs</td>
</tr>
</tbody>
</table>

Diagnose phase (Q1 2010)

The objective is to define a benchmark for further development and coming cycles.

- An innovation audit based up on the five innovation critical factors, Strategy, Learning, Processes and Relations (Tidd & Bessant, 2009) is giving a current state description of innovation capability in terms of quantitative and qualitative
- All audits are followed by on interviews based on the questions of the audit but given from a “how” perspective.
- Research question clarification and elaborated state of the art study.
- Basis for seminar series for the planning phase.

Planning phase (Q1 and Q2 2010)
The objective is to prepare and raise the ability for a coming action phase.

- A seminar series of four seminars in accordance with the four phases in the innovation process according to Tidd & Bessant (2009): Search, Select, Implement, Capture. Finally a fifth seminar on a collected innovation strategy is held.
- Before each seminar relevant literature and state of practice is provided to the participants.
- Each seminar is held in two steps. Initially a seminar on a system level where all companies’ management participate and to-be situations are defined. Secondly a seminar on company level for each company, providing understanding of the specific phase in innovation.
- A key instrument of the seminar series is a logbook where reflections and observations are documented. The final seminar on a tentative innovation strategy for each company is based on the logbooks.
- Complementary interviews are conducted.

Action phase (Q3 and Q4 2010)
The objective of this phase is to work with innovation improvement actions on a project level where the researchers partly participate and facilitate the development.

- During the phase company specific development projects are conducted on a product level concerning product innovation, operations management, organization, leadership, creativity and other aspects with links to the organizational preconditions for innovation.
- Findings and experiences are transferred to a company and system level.

Evaluation phase (Q4 2010)
The objective of this phase is to analyze the results of the earlier phases in order to adjust and improve a coming cycle of research and development.

- The actions and the results are evaluated in accordance with the initial state, the objectives of the actions and the objectives of the innovation strategy.
- Define next cycle for the initial two companies, going into a second work cycle.
- During the evaluation phase, the two coming companies are engaged and introduced into a coming research cycle.
Deliverables and results

We have defined a number of research objectives, industrial objectives and structural objectives for deliverables and results with the project.

Expected academic results

Expected academic results for me are to publish, 2 conference articles and 2 journal papers where I am the first author and two 2 conference articles and 2 journal papers where I am the second author. A licentiate theses are also expected to be presented during the project. The plan is:

- **2010**: Two conference papers from the work packages WP1 and WP2.
- **2011**: Two conference papers and two journal papers from the two work packages.
- **2012**: Two journal papers and two licentiate theses should be presented during 2012.

Expected industrial results

Expected results are to contribute to the improvement of the overall innovative capability in the five participating SMEs in the project. The objective is direct increased competitiveness in terms of successful products, increased turnover and motivated employees. On a secondary level the knowledge created in the project should be distributed to at least 50 companies by the industrial networks of Munktell Science Park, Eskilstuna Fabriksförening and Mälardalens Högskola.

Expected structural results

At a structural level expected results are to interlink research efforts at Mälardalens Högskola to company supportive actions at Munktell Science Park by shared positions, collaborative research based projects and additional development ideas in cooperation between Mälardalens Högskola and Munktell Science Park. The long-term objective is to strengthen the intermediary role of the science park as a knowledge link within innovation management.

Education and learning

Once again - innovation is a complex area, multidisciplinary by nature and in all situations affected by a diverse set of disciplines. To master and have excellence in all does unfortunately seems to be beyond my ability why defining and limit the core area for my studies becomes not only necessary but also crucial.

So far I have identified the need for more extensive studies in three areas: my research area, of course, where I need to learn more about strategic innovation management for improved overall innovation capabilities in SMEs, how to perform research with excellence and how to communicate the results to a broad public. To achieve this the plan is to take a number of academic courses, establish collaborative contacts with other national and international research groups and to work actively with different groups of stakeholders outside the academic world.

Courses

Courses that is planned to be taken is showed in the table below.
<table>
<thead>
<tr>
<th>Planned courses</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading course at CBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation classics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading course MdH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing journal articles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage and presentation technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaos and order in social systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedagogic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrelseutbildning – in engl? Board education?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External academic contact					
CBI Chalmers					
Stay at foreign university					
Search and contact researchers outside mdh					

| External non academic contact | | | | | |
| Active work in SMEs outside the research project | | | | | |

Figure 7: overview of the full-time plan of the PhD studies

Literature

The following is a list of literature that I have been recommended by senior innovation researchers for further innovation knowledge, both in the general field of innovation but also in the narrower field of innovation capabilities:

Hamel Gary The Why, What and How of Management Innovation by

Tidd Joe and Bessant John Managing Innovation by
A massive fourth revised edition that takes a broad grip of how to manage innovation from an innovation process perspective.

Utterback James M. Mastering the Dynamics of Innovation by
Describes the dynamics of industrial innovation, from how innovation enters an industry and established firms typically respond, and the importance for new and old players to – over time - establish a dominant design.

Von Hippel Erik Democratizing Innovation by
Describes the emerging user-centered innovation system and its advantages over manufacturer-centric innovation.

Journals and conferences
As a result of the interdisciplinary of innovation there is a wide range of literature and journals as well as conferences that all are relevant and close connected to my
research area. Highly respected researchers in the field publish in e.g. economic-, behavioral scientific-, production management- as well as more directly innovation technology targeted journals. This gives a diversity of approaches that contribute to a more diverse and richer picture, but also require conscious reflection of the base of different disciplines (F Sunnemark & M Åberg 2004). As I see it now, the following journals and conferences are those in which it would be of most interest for me to present coming research results.

My publish plan is to write my first paper during the summer so I by September can submit a draft for a symposium hold by ISPIM in December this year. One of the focuses of the symposium is innovation in SMEs. The international journal of innovation management will publish a special issue containing paper from this symposium - which of course to is something to aim for.

Except for that, my publishing strategy is this far limited to two activities; searching and learning more about how to find coming conferences and special issues before their call for papers is closed, Secondly taking the course writing academic papers. Grateful for all advises.

Journals

International Journal of Innovation Management
The International Journal of Innovation (IJIM) is the official journal of the International Society of Professional Innovation Management (ISPIM). Both the IJIM and ISPIM adopt a multi-disciplinary approach to addressing the many challenges of managing innovation, rather than a narrow focus on a single aspect.

Strategic Management Journal
The journal covers all facets of strategic management in both private and public organizations including e.g. innovation, entrepreneurship, creativity and knowledge management. Their aim is to improve existing knowledge and understanding of strategy development.

European Journal of Innovation Management
Aims to be a European forum for disseminating vital information and knowledge in the field of innovation. Publish high quality papers written by both academics and industrialists to capture leading edge developments, both in practice and theory.

Creativity and Innovation Management
Address the behavioral side of innovation management, organizational structures and processes to support leadership for creativity and innovation.

International Journal of Entrepreneurship and Innovation
Wants to be a forum for the exploration and dissemination of ideas and experience relating to the development and application of entrepreneurship. Publishes work in areas of business, management and in the social sciences.
Conferences

ISPIM 3rd Innovation Symposium – Managing the art of innovation
Held in Canada 12-15 December 2010, Organised by ISPIM.
The international journal of innovation management will publish a special issue containing paper from this symposium

ECCI XI – 12th conference on Creativity and Innovation 2011
Conference hold every second year that focuses on innovation and creativity. Conference theme for 2011 not set yet.

Researchers and other universities

There are a large number of highly interesting research groups around the world. My ambition is that I during my time, as a PhD student shall establish contact with a number of them. In addition to establishing contact is also my goal to spend at least one and preferably two shorter periods at foreign universities.

As a first step I have been in contact with CBI at Chalmers where they have senior researchers whose research focus is quite close to mine. A first contact is established and I have been promised a reading course, exclusively for me.

A next step is to contact the Technical University of Denmark, Lyngby where I know they have been running a research project showing major similarities to the project we are running.

Examples of universities and researchers whose research is very interesting to follow are e.g..

Massachusetts Institute of Technology – CISR (Center for Information Systems Research).
The “Innovating the Future of the Enterprise”-project addresses e.g. the following project questions:
How can leaders extend innovation capabilities across the enterprise and its ecosystem?
What emerging trends will have the greatest impact on organizations in the next five to ten years?

Harvard Business School
Runs a wide range of innovation research projects where e.g. of key researchers that are part of various research groups are:

Clayton Christensen
Professor that study the disruptive processes by which innovation transforms by studying technological enablers, business model innovations and value chains or business systems.

Rosabeth Moss Kanter
Professor that specialized in strategy, innovation, and leadership for change. has been named to lists of the "50 most influential business thinkers in the world".

Richard Rosenbloom
Professor Emeritus that is currently investigating the histories of radical technological innovations and their consequences for the competitive positions of both established firms and rivals that exploit new technologies to enter markets.

Center for Open Innovation – University of California-Berkeley Haas School of Business
Key research topics are open innovation and open innovation models. One of the leading researchers is:

Henry Chesbrough
Professor and the top researchers in the field. The researcher who actually coined the term “open innovation”.

Interesting industrial players

Industrial players
Most interesting are those industrial players who do not only manage to be highly innovative but have specialized at the innovation process in itself instead of just being innovative. Those actors who have actually contributed to the development and change of the discipline of innovation.

IDEO
Among the industrial actors of the industry that have actually changed the field of innovation, IDEO, is the first one to come at mind.

A world wide established design and innovation consultancy company that have developed a wide range of innovative methods. Specialists in the innovation process itself not a specific area of innovation, have a track record of thousands of projects for a large number of clients in a wide range of areas. Was ranked as one of the top 25 most innovative companies by BusinessWeek in 2006 and did consulting work for the other 24 companies in the top 25.

Innocentive
One of many crowd-sourcing providers. One of the industrial actors that have actually helped to open up companies to open innovation by bringing open innovation to the market through structured crowd-sourcing.
References

Journals

Andrew James P. and Sirkin Harold L., 2008, Aligning for innovation, Global Business and Organizational Excellence, Vol. 27, Iss. 6, pp. 21-39

Andrew James P. and Sirkin Harold L., 2007, Using the cash curve to discuss and discipline innovation investments, Strategy & Leadership, Vol. 35, Iss. 4. pp. 11-17

Chesbrough Henry, 2007, Business model innovation: it’s not just about technology anymore, Strategy & Leadership, Vol. 35, Iss. 6, pp. 12-17

Dobni, C. Brook, 2006, The innovation blueprint, Business Horizon, Vol. 49, Iss. 4; pg. 329-339

Hallgren Erik W., 2009, How to Use an Innovation Audit as a Learning Tool: A Case Study of Enhancing High-Involvement Innovation, Creativity and Innovation Management, Vol. 18, Iss. 1, pp. 48-58

Varadarajan Rajan, 2009, Fortune at the bottom of the innovation pyramid: The strategic logic of incremental innovations, Business Horizons, Vol. 52, Iss. 1, pp. 21-29

Books

Amabile Theresa M., 1996, Creativity in context, Westview Press, Boulder

Hands David, 2009, Vision and Value in Design Management, AVA Publishing SA, Lausanne

Sunnemark F & Åberg M, 2004, Tvärvetenskap – fält, perspektiv eller metod, Studentlitteratur, Lund,